Small-x and forward measurements at ATLAS

Dag Gillberg

on behalf of the ATLAS Collaboration

April 11, 2011

DIS 2011

parton level jet

Outline

- The ATLAS detector
- Overview of low-x measurements at ATLAS
- Forward jet production and calibration
- Analyses:
 - I. Inclusive forward jet cross section measurement
 - 2. Dijet production with a jet veto
 - 3. W charge asymmetry
- Summary

Newport News park

The ATLAS Detector

Length: 44 m Diameter: 24 m

 Central tracking $|\eta| < 2.5$

 Excellent EM and hadronic calorimetry

LAr calorimeter

 Hadronic tile/steel scintillator

Total coverage: $|\eta| < 4.9$

Muon spectrometers

 Zero-degree calorimeter

FCal: $3.1 < |\eta| < 4.9$

Designed to operate in very high rate environment

Low-x and forward measurements at ATLAS

Example analyses presented here:

- I. Forward jet inclusive cross section (low-x gluon PDF, BFKL)
- Rapidity separated jets
 (BFKL and other QCD phenomena)
- 3. Muon charge asymmetry from W (u and d quark PDFs)

Example of other "small-x" analyses

- Inclusive particle production in pp, Pb+p and Pb+Pb collision data
- Rapidity gaps measurement:
 Inclusive diffractive cross section as a function of rapidity gap (in progress)
- Measurement of the underlying event
- Transverse energy flow in the forward region

Inclusive forward jet cross section: $2.8 < |y_{iet}| < 4.4$

Forward jet production

- Consider LO dijet production
- Both jets balanced in transverse plane
- Rapidity separation:

$$\Delta y = |y_1 - y_2| = 2 y^*$$

 \bullet Parton momentum fraction x given by

$$x_1 = (2p_T/\sqrt{s}) e^{y_{\text{boost}}} \cosh y^*$$

 $x_2 = (2p_T/\sqrt{s}) e^{-y_{\text{boost}}} \cosh y^*$

Potential to probe the low-x regime:

Example:

$$p_T = 20 \text{ GeV}, y_1 = y_2 = 4.0$$

 $\Rightarrow y^* = 0, y_{boost} = 4.0$
 $\Rightarrow x_2 \approx 10^{-4} (\sqrt{s} = 7 \text{ TeV})$

Forward jet production

- Consider LO dijet production
- Both jets balanced in transverse plane
- Rapidity separation:

$$\Delta y = |y_1 - y_2| = 2 y^*$$

Parton momentum fraction x given by

$$x_1 = (2p_T/\sqrt{s}) e^{y_{\text{boost}}} \cosh y^*$$

 $x_2 = (2p_T/\sqrt{s}) e^{-y_{\text{boost}}} \cosh y^*$

Potential to probe the low-x regime:

Example:

$$\mathbf{p_T} = \mathbf{20} \text{ GeV}, \ \mathbf{y_1} = \mathbf{y_2} = \mathbf{4.0}$$

 $\Rightarrow \mathbf{y^*} = 0, \mathbf{y_{boost}} = 4.0$
 $\Rightarrow \mathbf{x_2} \approx \mathbf{10^{-4}} \ (\sqrt{s} = 7 \text{ TeV})$

Here,
$$\sqrt{s} = 14$$
 TeV, and
 $y = (y_1 + y_2)/2 = y_{boost}$
 $M = Q = 2$ pT cosh y^*

Forward jet calibration

hysics mode

- Forward JES uncertainty established using **p**_T balance of dijet events
- Non-perfect balance due to (forward) radiation effects and UE, large discrepancies of predictions from different physics models
- **Result**: large JES uncertainty for forward jets at low pt
- Under active investigation ...

Central JES uncert.: <2.5% for $60 < p_T < 800$ GeV

Papers: Dijet balance: ATLAS-CONF-2011-014, JES: ATLAS-CONF-2011-032

Inclusive jet cross section

- Major extension of previous measurement: low p_T and forward y
- Jet algorithm at ATLAS:
 Anti k_T, R=0.4 and R=0.6
- Comparison with prediction from various PDF sets and NLO+PS predictions
- Measured cross section unfolded to particle level
- NLO predictions corrected for nonperturbative effects

More details about this analysis given in separate talk by Ximo Poveda Torres at this morning's QCD Session

Publication: ATLAS-CONF-2011-047

Inclusive forward jet cross section

Inclusive jet double-differential cross section: $d^2\sigma/(dy\ dp_T)$

- Data and NLO predictions using different
 PDF sets over CTEQ
 6.6 prediction
- NNPDF, HERAPDF 1.5 and in particular MSTW 2008 agree better with data than CTEQ 6.6
- Experimental uncertainty is quite large at low p_T and forward y due to JES

Inclusive jet double-differential cross section as a function of jet p_T in different forward regions of |y| for jets identified using the anti-kt algorithm with R=0.6.

Inclusive forward jet cross section

- Baseline comparison: Inclusive jet cross section from NLO pQCD
- MSTW2008 PDF set used for all predictions
- The **Powheg NLO** generator is interfaced to PYTHIA 6 and **HERWIG** for PS and hadronization (first time NLO+PS used for inclusive jets!)
- Discrepancies are being investigated by Powheg authors

The ratio of the Powheg predictions showered using either Pythia or Herwig to the NLO predictions corrected for non-perturbative effects is shown.

Dijet production with a third jet veto

- Measurement of "gap fraction":
 Fraction of dijet events with no jet in rapidity range Δy bounded by dijet system
- No jet in gap with p_T above jet veto scale Q₀
- Probe several QCD phenomena:
- (A) Wide-angle soft-gluon radiation when avg. jet $p_T >> Q_0$
- (B) Large ∆y separation⇒ potential to test BFKL-like dynamics
- (C) Colour singlet exchange when events have high p_T and large Δy

Dedicated boundary jet definition to probe scenarios (A) and (B):

- (A) Leading two jets in p_T
- (B) Most separated in y

Fraction of events with no jets in gap

HEJ:

Parton-level
MC program
based on a
BFKL kernel

Sap Fraction

Powheg:

NLO generator interfaced to PYTHIA and HERWIG

MSTW 2008 used for all predictions ²

Note: Uncertainty on data smaller than uncertainty on predictions

Number of jets in the rapidity gap region

Parton-level MC program based on a **BFKL** kernel

Powheg:

NLO generator interfaced to **PYTHIA** and **HERWIG**

MSTW 2008 used for all predictions 2

Many more details in Long Zhao's talk on Thursday afternoon

Publication:

ATLAS-CONF-2011-038

W Charge Asymmetry

- W⁺ production larger than W at pp colliders due to two u and one d valence quarks
- W charge asymmetry:

$$A_{\mu} = \frac{d\sigma_{\mathrm{W}\mu^+}/d\eta_{\mu} - d\sigma_{\mathrm{W}\mu^-}/d\eta_{\mu}}{d\sigma_{\mathrm{W}\mu^+}/d\eta_{\mu} + d\sigma_{\mathrm{W}\mu^-}/d\eta_{\mu}}$$

 Can help constrain u and d PDFs approximately for momentum fractions: $10^{-3} < x < 10^{-1}$

Data 2010 (\subseteq s=7 TeV)

MC@NLO, CTEQ 6.6

decays in bins of absolute pseudorapidity.

Summary

high-x quark

- The ATLAS detector is working very well and is recording high quality data
- ATLAS has already made several measurements that provide insight to low-x and forward physics
- In this talk results were shown for:
 - I. Inclusive forward jet cross section
 - 2. Rapidity separated dijets events with a third-jet veto
 - 3. W charge asymmetry
- These measurements, and several more measurement not shown here for brevity, will be used to constrain QCD modelling
- Many more interesting measurements are on-going **STAY TUNED**

low-x gluon

BACKUP SLIDES

Links to the publications presented

Analyses presented here:

- Dijet balance: ATLAS-CONF-2011-014 JES uncertainty: ATLAS-CONF-2011-032
- Inclusive jet cross section: ATLAS-CONF-2011-047
- Dijet production with a jet veto: **ATLAS-CONF-2011-038**
- Muon charge asymmetry from W production: <u>arXiv:1103.2929v1</u>

A few other low-x analyses:

Dag Gillberg (Carleton)

- Charged particle multiplicity, $\sqrt{s} = 7 \text{ TeV}$: <u>ATLAS-CONF-2011-014</u> Charged particle multiplicity, \sqrt{s} = 900 GeV: CERN-PH-EP-2010-004
- Measurement of the underlying event properties: arXiv:1103.1816

ATLAS public Standard Model result page

Forward jet calibration

Goal: Measure eta intercalibration factor c (function of jet η and p_T) in dijet events, needed to bring jet to same scale as in the reference region

Central Reference Method (aka Standard Method)

$$p_T^{\text{avg}} = \frac{1}{2}(p_T^{\text{probe}} + \mathbf{p_T^{ref}})$$

$$\mathcal{A} = rac{oldsymbol{
ho}_{T}^{ ext{probe}} - oldsymbol{
ho}_{T}^{ ext{ref}}}{oldsymbol{
ho}_{T}^{ ext{avg}}}$$
 ,

$$\frac{p_T^{\text{probe}}}{p_T^{\text{ref}}} = \frac{2+\langle \mathcal{A} \rangle}{2-\langle \mathcal{A} \rangle} = 1/c$$

$$0.1 < |\eta_{
m ref}| < 0.6$$

Matrix Method

$$\mathcal{A} = rac{p_T^{ ext{left}} - p_T^{ ext{right}}}{p_T^{ ext{avg}}}, \quad \eta^{ ext{left}} < \eta^{ ext{right}}$$

$$\mathcal{R} = rac{p_T^{ ext{left}}}{p_T^{ ext{right}}} = rac{c^{ ext{right}}}{c^{ ext{left}}} = rac{2+\langle \mathcal{A}
angle}{2-\langle \mathcal{A}
angle}$$

Solve for all c_i using matrix of lin. eq.

Zero Degree Calorimeter (ZDC)

Eta coverage: 8.0-8.6 Potential to access very low $x \sim 10^{-6}$

The ATLAS Calorimeter and Inner Tracker

• Excellent LAr calorimeter, 200k channels, total coverage $|\eta| < 4.9$

 Hadronic tile scintillator/ steel calorimeter

• Inner tracker, $|\eta| < 2.5$ Silicon pixel Silicon microstrip **TRT**

Dijet production with a third jet veto

HEJ:

Parton-level MC program based on a **BFKL** kernel Fraction

Powheg:

NLO generator interfaced to **PYTHIA** and **HERWIG**

MSTW 2008 used ² for all predictions

Note: Uncertainty 1 smaller for data

